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Abstract

In this paper, we consider the problem of calculating the axial concentration profile of a solute transported by a

time-dependent flow in a rigid straight pipe. This generalizes the result that Taylor derived in 1953 for calculating

the axial concentration profile of a solute in a steady flow. Using asymptotic analysis, we derive a time-dependent

diffusion equation for the mean concentration profile along the axial-direction in a pipe. In the special case of time-

independent flow, our result reduces to that of Taylor.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1953, Sir Geoffrey Taylor considered the problem

of measuring the concentration of a solute in a slowly

moving flow in a rigid pipe [1]. Taylor assumed a Poise-

uillian velocity profile of the form u0ð1� r2

a2Þ, where u0 is
the maximum velocity along the axis of the pipe, a is the

radius of the pipe and r is the radial coordinate. He

showed that in the frame of reference moving with veloc-

ity u0
2
, the concentration of the solute satisfied the diffu-

sion equation, with a diffusion coefficient of
a2u2

0

192D, where

D is the coefficient of molecular diffusion for the solute.

In this paper, we generalize Taylor�s result to time-

dependent flows and derive the corresponding diffusion

equation for the mean concentration of the solute in

an axisymmetric setting. Some related work includes

the dispersion of solute in turbulent flow in a pipe [2],

dispersion of solute in a pipe where the distribution of
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv
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the solute is described in terms of its moments in the

flow direction [3], studies of the dispersion coefficient

of a chromatographic system where the velocity field is

time periodic [4,5] and a revision of the Taylor limit

where the validity of the theory is extended to better res-

olution and earlier times [6].

Calculating the concentration profile of an agent at a

given site of action is important in certain Magnetic Res-

onance Imaging (MRI) studies. Consider a fast-acting

drug (compared to total circulation time) that is admin-

istered in some vein. As an example, take the target area

to be some region in the brain. Using our time-depen-

dent Taylor diffusion equation and supposing we have

a complete circulatory model, one can calculate the con-

centration profile at the site of action in the brain. Dy-

namic susceptibility contrast (DSC) MRI studies for

imaging the brain are examples of studies where know-

ing the concentration profile of the administered agent

at the site of action is important. In DSC MRI, a bolus

injection of a paramagnetic contrast agent is adminis-

tered, and its passage through the vasculature is
ed.
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monitored by serial measurement of the MR signal loss

in the surrounding tissue. The scan time is typically very

short, on the order of a few seconds, and the time it

takes for an administered agent to get from a vein to

the brain is also on the order of a few seconds. A con-

trast agent, such as gadolinium diethylenetriamine pen-

taaceticacid (Gd-DTPA), is used to introduce contrast

in the MRI image. Gd-DTPA does not penetrate the

blood brain barrier, but stays in the vasculature. The

primary interests in a DSC MRI study is to extract

the blood volume map and perfusion map for the region

of interest. Since the scan time and the time taken to

reach the site of action from the site of administration

is short (a few seconds) compared to the time of one

complete circulation (approximately one minute in hu-

mans), how the agent is diffused in the vasculature is

important when calculating the concentration profile.

In calculating the cerebral blood flow (CBF), the con-

centration profile of interest is the concentration of con-

trast agent entering the region of interest, and is often

referred to as the arterial input function (AIF). The

AIF is typically estimated from a major artery, such as

the middle cerebral artery, and assumed to be the input

to the tissue. However, ignoring dispersion and delay ef-

fects that take place from the site of measurement of the

AIF to the tissue site can cause significant errors in the

quantification of CBF [7,8]. Since DSC MRI is com-

monly used in clinical studies of cerebral ischemia, these

errors lead to inaccurate information on stroke. Using

the time-dependent Taylor diffusion equation we derive,

and a circulation model, one can calculate the AIF at the

site of action and therefore derive more accurate perfu-

sion maps.

Researchers at the Toshiba Stroke Research Center

and Aerospace Engineering and Radiology used an

insoluble agent to improve flow measurement and quan-

tification of arteriovenous malformation (AVM) [9]. The

improvement on AVM flow measurement and visualiza-

tion was achieved by using Ethiodol�, an insoluble ethi-

odized oil as the contrast agent, as opposed to

conventionally used soluble agents in angiographic stud-

ies. The insoluble Ethiodol� has a much shorter transit

time than soluble contrasts. The authors explain that a

likely cause of a shorter transit time is that, according

to Taylor�s result, dispersion of the soluble agent is dri-

ven both by convective transport and diffusion.

Suppose a substance is present at time t = 0 with ini-

tial concentration f(x) in a rigid straight pipe, where the

velocity field is given by V(r, t;a) and x is the distance

along the axis of the pipe. The spread of the substance

in the fluid is primarily due to the combined effect of

molecular diffusion in the radial direction and convec-

tion parallel to the axis of motion. Assume that we are

in a regime where variations in the concentration caused

by convective transport occur in a time frame that is

much longer than the time it takes for appreciable radial
concentration differences to dissipate. We show that the

axial concentration profile of the substance is dispersed

according to a process that obeys the diffusion equation,

with a certain variable diffusion coefficient, when consid-

ered in a particular frame of reference. The general time-

dependent diffusion equation we derive reduces to

Taylor�s result in the time independent case. We then ap-

ply the resulting generalized equations to calculate the

mean concentration along a pipe where the velocity field

is one that comes from axisymmetric flow with a pres-

sure gradient that is sinusoidal in time.
2. Derivation of the generalized Taylor diffusion equation

Suppose we have an infinite circular pipe described in

the r � x plane by x = �1 to x = +1, r = 0 to a, where

the axial velocity field is given in cylindrical coordinates

by V(r, t;a), and the radial velocity is zero. Note that the

axial velocity profile is independent of x. The depen-

dence on a is made explicit so that later we can vary a

in order to study the asymptotic limit that leads to Tay-

lor diffusion. The axisymmetric convection-diffusion

equation for the concentration C(r,x, t) of a solute intro-

duced into the flow is given by

D
o2C
or2

þ 1

r
oC
or

þ o2C
ox2

� �
¼ oC

ot
þ V ðr; t; aÞ oC

ox
ð1Þ

where

C is the concentration of solute,

D is the coefficient of molecular diffusion of the

solute,

r is the radial variable,

x is distance parallel to axis of the pipe,

t is time,

V(r, t;a) = u0(t)F(r, t;a) is the axial velocity of the mov-

ing fluid, where u0ðtÞ
2

is the average velocity over a

cross-section at a given time t.

Let x1 = x � x0(t), where x0(t) will be chosen later,

and also let t1 = t. Then define Ca (r,x1, t1) = C(r,x, t)

at corresponding points, that is Ca(r,x � x0(t), t) = C ·
(r,x, t). It follows that oC

ox ¼
oCa
ox1

and oC
ot ¼ �x00ðtÞ oCa

ox1
þ oCa

ot1
,

where x00ðtÞ is the derivative with respect to time of

x0(t). Note that this transformation defines our frame

of reference. Eq. (1), therefore, in terms of the new vari-

ables is

D
o2Ca

or2
þ 1

r
oCa

or
þ o2Ca

ox21

� �

¼ oCa

ot1
þ u0F ðr; t; aÞ � x00ðtÞ
� � oCa

ox1
ð2Þ

We solve for the mean concentration profile across the

axisymmetric pipe in the regime where the time taken
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for appreciable convective effects is large compared to

diffusion effects along the r-axis. For a given t, if L is

the spread of the solute, then this is valid when
a2

D
u0
L ¼ Oð�Þ, where � is a small parameter. The spread

can be taken to be the width of the distribution at half

the maximum height.

Instead of V(r, t;a) in Eq. (1) we will use V ða0ra ; t; aÞ
which gives the correct result when a0 = a, that is

V ðr; t; aÞ ¼ V ða0 r
a ; t; aÞja0¼a. We consider the limit

�! 0 where u0 ¼ ~u0
�
, a = �a0, z ¼ r

a ¼ r
�a0
, and

x00ðtÞ ¼
~x0
0
ðtÞ
�
, where ~u0, a0 and ~x00 are assumed fixed as

�! 0. Thus typical velocities are assumed to be Oð1
�
Þ

and the radius of the pipe is assumed to be O(�). Then
define Cb(z,x1, t1) = Ca(r,x1, t1) at corresponding points,

that is Cbð r
�a0

; x1; t1Þ ¼ Caðr; x1; t1Þ. Substituting the new

expressions for the variables u0 and r and simplifying, we

get

D
a20

o
2Cb

oz2
þ 1

z
oCb

oz

� �
þ �2D

o
2Cb

ox21

¼ �2
oCb

ot1
þ �ð~u0F ða0z; t1; aÞ � ~x00ðt1ÞÞ

oCb

ox1
ð3Þ

Let Cb(z,x1, t1) = C0(z,x1, t1) + �C1(z,x1,t1) + �2C2(z,x1, t1)

+ O(�3). Substituting this expression for Cb in Eq. (3)

yields

D
a20

o2C0

oz2
þ 1

z
oC0

oz
þ �

o2C1

oz2
þ 1

z
oC1

oz

� ��

þ�2
o2C2

oz2
þ 1

z
oC2

oz

� ��
þ �2D

o2C0

ox21

¼ �2
oC0

ot1
þ �ð~u0F ða0z; t1; aÞ � ~x00ðt1ÞÞ

oC0

ox1

þ �2ð~u0F ða0z; t1; aÞ � ~x00ðt1ÞÞ
oC1

ox1
ð4Þ

O(1) terms are

D
a20

o2C0

oz2
þ 1

z
oC0

oz

� �
¼ 0 ð5Þ

The only solutions of 5 are linear combinations of log(z)

and constants in z. Since log(z) is singular at zero, the

only physical solutions are therefore independent of z.

From now on, we shall write C0(x1, t1) since C0 is inde-

pendent of z.

The O(�) terms are

D
a20

o2C1

oz2
þ 1

z
oC1

oz

� �
¼ ð~u0F ða0z; t1; aÞ � ~x00ðt1ÞÞ

oC0

ox1
ð6Þ

Multiplying by z and rearranging, we get

D
a20

o

oz
z
oC1

oz

� �
¼ zð~u0F ða0z; t1; aÞ � ~x00ðt1ÞÞ

oC0

ox1
ð7Þ

Integrating and using the no-flux condition at the wall of

the pipe, ðoCb

oz Þz¼1 ¼ 0, we get the following condition on

~x00ðt1Þ:
~x00ðt1; ~u0Þ ¼ 2

Z 1

0

~u0zF ða0z; t1; aÞdz ð8Þ

The dependence on ~u0 is made explicit for future refer-

ence. Recall that u0 ¼ ~u0
�
and x00 ¼

~x0
0

�
. Eq. (8) shows the

consistency of assuming that x00 and u0 are both the same

order of magnitude, Oð1
�
Þ. Now, we look for a solution

of

D
a20

o2C1

oz2
þ 1

z
oC1

oz

� �
¼ ~u0F ða0z; t1; aÞ � ~x00ðt1; ~u0Þ

� � oC0

ox1
oC1

oz

� �
z¼1

¼ 0 ð9Þ

Integrating the first equation with respect to z and sim-

plifying, we get

D
a20

oC1

oz
¼ ~u0

z

Z z

0

�zF ða0�z; t1; aÞd�z�
z
2
~x00ðt1; ~u0Þ

� �
oC0

ox1

þ constant

z
ð10Þ

Integrating again with respect to z and simplifying, we

get

C1 ¼
a20
D

Z z

0

~u0
�z

Z �z

0

~zF ða0~z; t1; aÞd~zd�z�
z2

4
~x00ðt1; ~u0Þ

� �
oC0

ox1

þ constant logðzÞ
ð11Þ

We eliminate the log(z) term because of its singularity at

z = 0, and we get the following expression for the solu-

tion C1:

C1 ¼
a20
D

Z z

0

~u0
�z

Z �z

0

~zF ða0~z; t1; aÞd~zd�z�
z2

4
~x00ðt1; ~u0Þ

� �
oC0

ox1
ð12Þ

Finally, consider the O(�2) terms:

D
a20

o
2C2

oz2
þ 1

z
oC2

oz

� �
¼ oC0

ot1
þ ð~u0F ða0z; t1; aÞ

� ~x00ðt1; ~u0ÞÞ
oC1

ox1
� D

o2C0

ox21
ð13Þ

Differentiating Eq. (12) with respect to x1, we get

oC1

ox1
¼ a20

D

Z z

0

~u0
�z

Z �z

0

~zF ða0~z; t1; aÞd~zd�z
�

� z2

4
~x00ðt1; ~u0Þ

�
o2C0

ox2
ð14Þ
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and therefore

D
a20

o

oz
z
oC2

oz

� �� �

¼ z
oC0

ot
þ zð~u0F ða0z; t1; aÞ � ~x00ðt1; ~u0ÞÞ

� a20
D

Z z

0

~u0
�z

Z �z

0

~zF ða0~z; t1; aÞd~zd�z�
z2

4
~x00ðt1; ~u0Þ

� �

� o2C0

ox21
� zD

o2C0

ox21
ð15Þ

Integrating from 0 to 1 and simplifying yields

oC0

ot
¼ 2

a20
D

Z 1

0

~x00ðt1; ~u0Þ~u0z
Z z

0

1

�z

Z �z

0

~zF ða0~z; t1;aÞd~zd�z
���

þ z3

4
~u0~x

0
0ðt1; ~u0ÞF ða0z; t1;aÞ

� ~u0zF ða0z; t1;aÞ~u0
Z z

0

1

�z

Z �z

0

~zF ða0~z; t1;aÞd~zd�z

� 1

16
~x00ðt1; ~u0Þ

2

�
dz
�
þD

�
o
2C0

ox21
ð16Þ

Since a0~u0 ¼ au0, expressing F in terms of V, that is

using V ða0a r; t; aÞ ¼ u0ðtÞF ða0a r; t; aÞ, and evaluating V at

a0 = a, we get as a final expression

oC0

ot
¼ 2a2

D

Z 1

0

x00ðt1; u0Þz
Z z

0

1

�z

Z �z

0

~zV ða~z; t1; aÞd~zd�z
���

þ z3

4
x00ðt1; u0ÞV ðaz; t1; aÞ

� zV ðaz; t1; aÞ
Z z

0

1

�z

Z �z

0

~zV ða~z; t1; aÞd~zd�z

� 1

16
x00ðt1; u0Þ

2

�
dz
�
þ D

�
o2C0

ox21
ð17Þ

This is the general Taylor diffusion equation for time-

dependent flow. In the steady state, V ðr; t; aÞ ¼
u0ð1� ðra Þ

2Þ. For z ¼ r
a ¼ r

�a0
, V(az, t;a) = u0(1 � z2). Eq.

(17) then simplifies to the time-independent, classical

Taylor result. This is shown as follows: substituting

V(az, t;a) = u0 (1 � z2) we getZ z

0

u0
�z

Z �z

0

~zð1� ~z2Þd~zd�z ¼ u0

Z z

0

�z
2
� �z3

4

� �
d�z

¼ u0
16

ð4z2 � z4Þ ð18Þ

Substituting F(az, t;a) = 1 � z2 in Eq. (8) and simplifying

we get the following expression for x00ðt; u0Þ:

x00ðt; u0Þ ¼ 2u0

Z 1

0

zð1� z2Þdz¼ 2u0
1

2
� 1

4

� �
¼ u0

2
ð19Þ

So x00ðt; u0Þ is the average speed over the cross section of

the pipe. It follows that the integral inEq. (17) simplifies toZ 1

0

u20
2ð16Þzð4z

2 � z4Þþ z3

4

u20
2
ð1� z2Þ

�

� u20
16

zð1� z2Þð4z2 � z4Þ� u20
4

1

16

�
dz

¼ u20
2

1

16
1� 1

6

� �
þ 1

16
� 1

24

� �
� 1

32
� 2

16
1� 5

6
þ 1

8

� �� �

¼ u20
2

1

192
ð20Þ
Eq. (17) therefore reduces to

oC0

ot
¼ a2

u20
192D

þ D
� �

o2C0

ox21
ð21Þ

which is the classical result that Taylor obtained in his

1953 paper. Note that the effective diffusion coefficient

has two terms. One is just the molecular diffusion D.

The other
a2u2

0

192D , remarkably depends inversely on D.

The effective diffusion coefficient in our result, Eq.

(17), although much more complicated, has this same

dependence on D, in that one term is D itself, and the

rest of the expression has a factor of 1
D.
3. Application

We solved for the concentration of a solute which is

present at time t = 0 with a given distribution C(r,x, 0) in

an axisymmetric pipe in which the pressure gradient

driving the flow is given by op
ox ¼ A sinðw0tÞ þ B. We then

solved for the axisymmetric flow along the pipe accord-

ing to the equation

q
oV
ot

þ op
ox

¼ l
o2V
or2

þ 1

r
oV
or

� �
ð22Þ

together with the no slip condition at the boundary

Vja = 0 and the condition that the flow is finite at

r = 0. Substituting op
ox ¼ A sinðw0tÞ þ B into the equation

and solving for V using Fourier analysis, we get

V ðr; t; aÞ ¼ �A
2w0q

�1þ
J 0 �ð�1Þ

3
4r

ffiffiffiffiffiffiffiffiffiffiffiffi
�w0

q
l

q� �

J 0 �ð�1Þ
3
4a

ffiffiffiffiffiffiffiffiffiffiffiffi
�w0

q
l

q� �
0
BB@

1
CCAe�iw0t

þ �A
2w0q

�1þ
J 0 �ð�1Þ

3
4r

ffiffiffiffiffiffiffiffi
w0

q
l

q� �

J 0 �ð�1Þ
3
4a

ffiffiffiffiffiffiffiffi
w0

q
l

q� �
0
BB@

1
CCAeiw0t

þ B
4l

ðr2 � a2Þ

ð23Þ

where J0 is the zeroth order Bessel function of the first

kind. To be able to use the generalized Taylor Eq. (17)

we numerically calculated the effective diffusion coeffi-

cient (a function of time) and then used a heat equation

solver to solve for the concentration at a given time t

along the pipe. For comparison, we then solved the

corresponding convection–diffusion equation using

FEMLAB 3.0 (Comsol, MA). We used the ‘‘Transient

Convection and Diffusion’’ FEMLAB 3.0 module with

parameters A = 55, B = �40, q = 1, l = 1, a = 0.25,

w0 ¼ 2p
T and T = 0.75. The units we used were centime-

ters for distance, seconds for time and Pascals for pres-

sure. Note that the amplitude of the oscillation A in the
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pressure gradient is comparable to the amplitude B of

the mean pressure gradient. As initial condition, we used

Cðr; x; 0Þ ¼ f ðxÞ ¼ 100e�0:005x2 .

Fig. 1 is a comparison of the generalized Taylor diffu-

sion equation solution and the axisymmetric convection–

diffusion solution at t = 0, 20, 40, 60. Note that many

cycles of the oscillatory flow have elapsed between each

of the curves shown in the figure. Fig. 1 shows that there

is excellent agreement between the two sets of solutions.

We also consider the limit of high Womersley number

a ¼ r
ffiffiffi
x
m

p
, where m ¼ l

q, and low Womersley number for

the flow produced with the sinusodial pressure gradient

given by op
ox ¼ A sinðxtÞ þ B. For Womersley number suf-

ficiently greater than one, the velocity profile at a given

location x along the pipe is flat near the center, with a

Stokes layer near the wall. This also known as the slug

flow limit. For Womersley number sufficiently less than

one, the flow is quasi-steady, and the velocity profile at

a given x location along the pipe is approximately para-

bolic. This is also known as the slow varying Hagen–

Poiseuille limit. We fix the parameters A = 55, B = �2,

q = 1, l = 0.04, a = 0.25, T = 0.75, vary the frequency

x, and use the same initial value Cðr; x; 0Þ ¼ f ðxÞ ¼
100e�0:005x2 . We letx ¼ 2p � 5

T for the high frequency limit

or the slug flow limit, giving a Womersley number

a = 8.09. We let x ¼ 2p � 1
T�100 000 for the low frequency

limit or the slow varying Hagen–Poiseuille limit, giving

aWomersley number a = 0.011. Figs. 2 and 3 correspond

to the slug flow limit, and the slow varying Hagen–

Poiseuille limit respectively. Both figures show excellent

agreement between the convection–diffusion solution

and the Taylor solution based on Eq. (17). The parame-

ters were chosen to be physiologically relevant. The per-

iod of the cardiac cycle is taken to be 0.75 s, and blood is

taken to have a kinematic viscosity m ¼ l
q ¼ 0:04 cm2

s . The
radius a of the common carotid artery in a human is

approximately 0.25 cm. The pressure gradient parame-

ters were chosen to allow for reversal of flow near the ar-

tery walls in the slug flow limit, which is typical of flow in

the arteries. The Womersley number in the circulation

varies greatly and can go up in the large arteries to

approximately the upper limit which we have chosen

for the slug flow, to as low in the small arteries as the

lower limit we have chosen for the Hagen–Poiseuille flow.
4. Conclusion

This paper generalizes the 1953 Taylor diffusion re-

sult to time-dependent flows. To verify the theory, we
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have shown that the axial concentration profile calcu-

lated by means of the axisymmetric convection–diffusion

equation and by means of the one-dimensional general-

ized Taylor diffusion equation are in good agreement.
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